题目内容
15.设向量$\overrightarrow{a}$=(2,4)与向量$\overrightarrow{b}$=(x,6)共线,则实数x=( )A. | 2 | B. | 3 | C. | 4 | D. | 6 |
分析 利用向量共线的充要条件得到坐标的关系求出x.
解答 解;因为向量$\overrightarrow{a}$=(2,4)与向量$\overrightarrow{b}$=(x,6)共线,
所以4x=2×6,解得x=3;
故选:B.
点评 本题考查了向量共线的坐标关系;如果两个向量向量$\overrightarrow{a}$=(x,y)与向量$\overrightarrow{b}$=(m,n)共线,那么xn=ym.
练习册系列答案
相关题目
3.若不等式组$\left\{{\begin{array}{l}{x+y-2≤0}\\{x+2y-2≥0}\\{x-y+2m≥0}\end{array}}\right.$,表示的平面区域为三角形,且其面积等于$\frac{4}{3}$,则m的值为( )
A. | -3 | B. | 1 | C. | $\frac{4}{3}$ | D. | 3 |
10.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
(Ⅰ)求y关于t的回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$.
(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$中
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
时间代号t | 1 | 2 | 3 | 4 | 5 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$中
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.
4.若sinα=-$\frac{5}{13}$,则α为第四象限角,则tanα的值等于( )
A. | $\frac{12}{5}$ | B. | -$\frac{12}{5}$ | C. | $\frac{5}{12}$ | D. | -$\frac{5}{12}$ |
5.设a1,a2,…,an∈R,n≥3.若p:a1,a2,…,an成等比数列;q:(a12+a22+…+an-12)(a22+a32+…+an2)=(a1a2+a2a3+…+an-1an)2,则( )
A. | p是q的充分条件,但不是q的必要条件 | |
B. | p是q的必要条件,但不是q的充分条件 | |
C. | p是q的充分必要条件 | |
D. | p既不是q的充分条件,也不是q的必要条件 |