题目内容

【题目】设函数f(x)=x3﹣2ex2+mx﹣lnx,记g(x)= ,若函数g(x)至少存在一个零点,则实数m的取值范围是(
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2 ,e2+ ]

【答案】A
【解析】解:∵f(x)=x3﹣2ex2+mx﹣lnx的定义域为(0,+∞),
又∵g(x)=
∴函数g(x)至少存在一个零点可化为
函数f(x)=x3﹣2ex2+mx﹣lnx至少有一个零点;
即方程x3﹣2ex2+mx﹣lnx=0有解,
则m= =﹣x2+2ex+
m′=﹣2x+2e+ =﹣2(x﹣e)+
故当x∈(0,e)时,m′>0,
当x∈(e,+∞)时,m′<0;
则m=﹣x2+2ex+ 在(0,e)上单调递增,
在(e,+∞)上单调递减,
故m≤﹣e2+2ee+ =e2+
又∵当x+→0时,m=﹣x2+2ex+ →﹣∞,
故m≤e2+
故选A.
由题意先求函数的定义域,再化简为方程x3﹣2ex2+mx﹣lnx=0有解,则m= =﹣x2+2ex+ ,求导求函数m=﹣x2+2ex+ 的值域,从而得m的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网