题目内容

【题目】已知α∈(0, ),β∈(0,π),且tan(α﹣β)= ,tanβ=﹣
(1)求tanα;
(2)求2α﹣β的值.

【答案】
(1)解:∵2α﹣β=2(α﹣β)+β,

又tan(α﹣β)=

∴tan2(α﹣β)= =

故tan(2α﹣β)=tan[2(α﹣β)+β]= = =1.

∴tanα=tan[(α﹣β)+β]= =


(2)解:∵0<α<

∴0<2α<

又∵tanβ=﹣ ,且β∈(0,π)β∈( ,π)﹣β∈(﹣π,﹣ ).

∴2α﹣β∈(﹣π,0).又由(1)可得tan(2α﹣β)=1,

∴2α﹣β=﹣


【解析】(1)观察角度的关系发现2α﹣β=2(α﹣β)+β,求出tan2(α﹣β),然后利用两角和的正切函数求出tan(2α﹣β),进而可求tanα的值.(2)再根据tanα、tanβ的值确定α,β的具体范围,进而确定2α﹣β的范围,就可以根据特殊角的三角函数值求出结果.
【考点精析】解答此题的关键在于理解两角和与差的正切公式的相关知识,掌握两角和与差的正切公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网