题目内容
【题目】如图,四棱锥P﹣ABCD中,底面ABCD是菱形, ,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.
【答案】
(1)证明:连接PF,
∵PA=PD,F为AD的中点,
∴PF⊥AD,
∵底面ABCD是菱形, ,
∴△ABD是等边三角形,∵F为AD的中点,
∴BF⊥AD,
又PF,BF平面PBF,PF∩BF=F,
∴AD⊥平面PBF,∵PB平面PBF,
∴AD⊥PB
(2)解:由(1)得BF⊥AD,又∵PD⊥BF,AD,PD平面PAD,
∴BF⊥平面PAD,又BF平面ABCD,
∴平面PAD⊥平面ABCD,
由(1)得PF⊥AD,平面PAD∩平面ABCD=AD,
∴PF⊥平面ABCD,
在直角△PAF中,PA=5,AF= AD=3,∠PFA=90°,∴PF=4,
∴四面体PBCD的体积 .
【解析】(1)连接PF,由三线合一可得AD⊥BF,AD⊥PF,故而AD⊥平面PBF,于是AD⊥PB;(2)证明PF⊥平面ABCD,计算PF,代入体积公式计算.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.
练习册系列答案
相关题目