题目内容
如图,四棱锥的底面为矩形,且,,,(Ⅰ)平面与平面是否垂直?并说明理由;(Ⅱ)求直线与平面所成角的正弦值.
(I)略(Ⅱ)直线PC与平面ABCD所成角的正弦值
解析
如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的余弦值;(III)求点E到平面ACD的距离。
(本小题满分13分)如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.(Ⅰ)求证:AD⊥平面SBC;(Ⅱ)试在SB上找一点E,使得平面ABS⊥平面ADE,并证明你的结论.
在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.(Ⅰ)证明AB⊥平面VAD;(Ⅱ)求面VAD与面VDB所成二面角的大小。
(本小题满分12分)如图所示,正方形和矩形所在平面相互垂直,是的中点. (1)求证:;(2)若直线与平面成45o角,求异面直线与所成角的余弦值.
(本小题满分12分)四棱锥的底面是正方形,,点E在棱PB上.若AB=,(Ⅰ)求证:平面; (Ⅱ)若E为PB的中点时,求AE与平面PDB所成的角的大小.
(本小题满分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(1)当时,求证:BD⊥EG ;(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(3)当取得最大值时,求二面角D-BF-C的余弦值.
如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的中点,求证:平面D1BQ∥平面PAO.
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)设PM="t" MC,若二面角M-BQ-C的平面角的大小为30°,试确定t的值.