题目内容
已知数列{an}和{bn}满足:
,其中λ为实数,n为正整数.
(Ⅰ)若数列{an}前三项成等差数列,求
的值;
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240056099131508.png)
(Ⅰ)若数列{an}前三项成等差数列,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609928292.png)
(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;
(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
(1)
(2) λ≠-6时,数列{bn}是以-(λ+6)为首项,-
为公比的等比数列.
(3) λ的取值范围是(-b-6, -3a-6)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609928400.png)
(2) λ≠-6时,数列{bn}是以-(λ+6)为首项,-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609944382.png)
(3) λ的取值范围是(-b-6, -3a-6)
试题分析:(Ⅰ)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609991460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240056100061091.png)
由条件可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240056100221079.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609928400.png)
(Ⅱ)解:因为bn+1=(-1)n+1[an+1-3(n-1)+9]=(-1)n+1(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609944382.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609944382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609944382.png)
又b1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005610100560.png)
当λ=-6时,bn=0(n∈N+),此时{bn}不是等比数列,
当λ≠-6时,b1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005610100560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005610147690.png)
故当λ≠-6时,数列{bn}是以-(λ+6)为首项,-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609944382.png)
(Ⅲ)由(Ⅱ)知,当λ=-6,bn=0,Sn=0,不满足题目要求.
∴λ≠-6,故知bn= -(λ+6)·(-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609944382.png)
Sn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240056102091162.png)
要使a<Sn<b对任意正整数n成立,
即a<-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005610209369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005609944382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240056102562519.png)
当n为正奇数时,1<f(n)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240056102711277.png)
∴f(n)的最大值为f(1)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005610287356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005610318372.png)
于是,由①式得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005610334383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005610209369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240056103651015.png)
当a<b
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005610381226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005610412241.png)
当b>3a时存在实数λ,使得对任意正整数n,都有a<Sn<b,
且λ的取值范围是(-b-6, -3a-6) (16分)
点评:熟练的根据等差数列和等比数列的定义和求和来求解,属于中档题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目