题目内容
【题目】已知函数f(x)=ln(x﹣2)﹣ ,(a为常数且a≠0),若f(x)在x0处取得极值,且x0[e+2,e2+2],而f(x)≥0在[e+2,e2+2]上恒成立,则a的取值范围( )
A.a≥e4+2e2
B.a>e2+2e
C.a≥e2+2e
D.a>e4+2e2
【答案】D
【解析】解:由f(x)=ln(x﹣2)﹣ ,得f′(x)= (x>2),令f′(x)=0,可得x0=1± ,∵f(x)在x0处取得极值,∴1+ >2,即a>0.
∴函数在(2,1+ )上单调增,在(1+ ,+∞)上单调减,
又x0[e+2,e2+2],
∴函数在区间[e+2,e2+2]上是单调函数
∴ 或 ,
解得a>e4+2e2 .
∴a的取值范围是a>e4+2e2 .
故选:D.
【考点精析】通过灵活运用函数的最大(小)值与导数,掌握求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值即可以解答此题.
练习册系列答案
相关题目