ÌâÄ¿ÄÚÈÝ
5£®ÉèÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\sqrt{10}cos¦È}\\{y=-1+\sqrt{10}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+2t}\\{y=1+t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬ÔòÖ±ÏßlÓëÇúÏßC½ØµÃµÄÏÒ³¤Îª$2\sqrt{5}$£®·ÖÎö ±¾Ìâ¿ÉÒÔ½«ÇúÏßCµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÔÙ½«Ö±ÏßlµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬È»ºóÀûÓõãÏß¾àÀ빫ʽÇó³öÏÒÐľàµÄ³¤£¬¸ù¾Ý¹´¹É¶¨Àí£¬Çó³öÏÒ³¤£¬¼´µÃ±¾Ìâ½áÂÛ£®
½â´ð ½â£º¡ßÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\sqrt{10}cos¦È}\\{y=-1+\sqrt{10}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÇúÏßCµÄ·½³ÌΪ£º£¨x-2£©2+£¨y+1£©2=10£¬
¡àÔ²ÐÄC£¨2£¬-1£©£¬°ë¾¶r=$\sqrt{10}$£®
¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+2t}\\{y=1+t}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬
¡àÖ±ÏßlµÄ·½³ÌΪ£ºx-2y+1=0£®
µãC£¨2£¬-1£©µ½Ö±Ïßl£ºx-2y+1=0µÄ¾àÀëΪ£º
d=$\frac{|2-2¡Á£¨-1£©+1|}{\sqrt{{1}^{2}+£¨-2£©^{2}}}$=$\sqrt{5}$£®
Óɹ´¹É¶¨ÀíµÃµ½ÏÒ³¤Îª£º
l=$2\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{10-5}$=$2\sqrt{5}$£®
¹Ê´ð°¸Îª£º$2\sqrt{5}$£®
µãÆÀ ±¾Ì⿼²éÁ˽«²ÎÊý·½³Ìת»¯ÎªÆÕͨ·½³ÌµÄÏû²Î·¨£¬»¹¿¼²éÁËÓÃÏÒÐľàÇóÏÒ³¤µÄ֪ʶ£¬±¾ÌâÄѶȲ»´ó£¬ÊôÓÚ»ù´¡Ì⣮
A£® | 3x+y-6=0 | B£® | x+y-4=0 | ||
C£® | x+y-4=0»ò3x+y-6=0 | D£® | ÎÞ·¨È·¶¨ |
»¼Õß | δ»¼Õß | ºÏ¼Æ | |
·þÓÃÒ© | 10 | 40 | 50 |
û·þÓÃÒ© | 20 | 30 | 50 |
ºÏ¼Æ | 30 | 70 | 100 |
P£¨K2¡Ýk£© | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A£® | 0.005 | B£® | 0.05 | C£® | 0.010 | D£® | 0.025 |