题目内容
已知函数(为常数,且),且数列是首项为4,公差为2的等差数列。
(Ⅰ)求证:数列是等比数列;
(Ⅱ)若,当时,求数列的前n项和。
(Ⅰ)详见解析;(Ⅱ).
解析试题分析:(Ⅰ)数列是等比数列,只需证明等于一个与无关的常数即可,由已知数列是首项为4,公差为2的等差数列,故,即,可求得,代入即可数列是等比数列;(Ⅱ)若,当时,求数列的前项和,首先求出数列的通项公式,由(Ⅰ)可知,故,这是一个等差数列与一个等比数列对应项积所组成的数列,可利用错位相减法来求和,可求得.
试题解析:(Ⅰ)由题意知f(an)=4+(n-1)×2=2n+2, (2分)
即logkan=2n+2,∴an=k2n+2, (3分)
∴. (5分)
∵常数k>0且k≠1,∴k2为非零常数,
∴数列{an}是以k4为首项,k2为公比的等比数列。 (6分)
(Ⅱ)由(1)知,bn=anf(an)=k2n+2·(2n+2),
当k=时,bn=(2n+2)·2n+1=(n+1)·2n+2. (8分)
∴Sn=2·23+3·24+4·25++(n+1)·2n+2, ①
2Sn=2·24+3·25++n·2n+2+(n+1)·2n+3, ② (10分)
②-①,得Sn=―2·23―24―25――2n+2+(n+1)·2n+3
=―23―(23+24+25++2n+2)+(n+1)·2n+3,
∴Sn=―23―+(n+1)·2n+3=n·2n+3. (12分)
考点:等差数列与等比数列的综合,数列求和.
练习册系列答案
相关题目