题目内容
18.如果实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=$\frac{y+1}{x}$的最大值为7.分析 由题意画出可行域,由z=$\frac{y+1}{x}$的几何意义,即可行域内动点(x,y)与定点(0,-1)连线的斜率得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$作出可行域如图,
z=$\frac{y+1}{x}$的几何意义为可行域内动点(x,y)与定点(0,-1)连线的斜率,
联立$\left\{\begin{array}{l}{x-y+1=0}\\{2x+y-2=0}\end{array}\right.$,解得B($\frac{1}{3},\frac{4}{3}$),
${k}_{PB}=\frac{\frac{4}{3}+1}{\frac{1}{3}}=7$.
∴z=$\frac{y+1}{x}$的最大值为7.
故答案为:7.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,考查数学转化思想方法,是中档题.
练习册系列答案
相关题目
13.已知向量$\overrightarrow{OA}$=(2,-2,3),向量$\overrightarrow{OB}$=(x,1-y,4z),且平行四边形OACB对角线的中点坐标为(0,$\frac{3}{2}$,-$\frac{1}{2}$),则(x,y,z)等于( )
A. | (-2,-4,-1) | B. | (-2,-4,1) | C. | (-2,4,-1) | D. | (2,-4,-1) |
3.等差数列{an}中,a5=4,a9=10,则a13=( )
A. | 25 | B. | 16 | C. | 14 | D. | 12 |
7.数列{an}的前n项和Sn=n(n+1),则它的第n项an是( )
A. | n | B. | n(n+1) | C. | 2n | D. | 2n |