ÌâÄ¿ÄÚÈÝ

3£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨0£¼b£¼$\sqrt{2}$£©£¬Ð±ÂÊΪ1ÇÒ¹ýÍÖÔ²ÓÒ½¹µãFµÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÏòÁ¿$\overrightarrow{OA}$+$\overrightarrow{OB}$ÓëÏòÁ¿$\overrightarrow{a}$=£¨2£¬-1£©¹²Ïߣ®
£¨¢ñ£©Çób£»
£¨¢ò£©µãP£¨x0£¬y0£©ÔÚÍÖÔ²ÉÏÒƶ¯£¨Ö±ÏßAB²»¹ýµãP£©£¬ÇÒÖ±ÏßPA¡¢PB·Ö±ðÓëÖ±Ïßl£ºx=2Ïཻ£¬½»µã¼ÇΪM¡¢N£¬ÊÔÎÊM¡¢NÁ½µãµÄ×Ý×ø±êÖ®»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¸Ã¶¨Öµ£»Èô²»ÊÇÇë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©½«Ö±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬µÃµ½Ò»Ôª¶þ´Î·½³Ì£¬¸ù¾ÝΤ´ï¶¨Àí½áºÏ¹²ÏßÏòÁ¿µÃµ½¹ØÓÚbµÄ·½³Ì£¬Çó³öbµÄÖµ¼´¿É£»
£¨¢ò£©ÏÈÇó³öPB¡¢PAµÄ·½³Ì£¬Áîx=2£¬·Ö±ðÇó³öyM£¬yN£¬´Ó¶øµÃµ½´ð°¸£®

½â´ð ½â£º£¨¢ñ£©ÉèÖ±ÏßAB£ºy=x-c£¬ÁªÁ¢ÍÖÔ²·½³ÌµÃ£º£¨b2-2£©x2-4cx+2c2-2b2=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉΤ´ï¶¨ÀíµÃ£ºx1+x2=$\frac{4c}{{b}^{2}-2}$£¬x1•x2=$\frac{{2c}^{2}-{2b}^{2}}{{b}^{2}-2}$£¬
¡à$\overrightarrow{OA}$+$\overrightarrow{OB}$=£¨x1+x2£¬y1+y2£©=£¨$\frac{4c}{{b}^{2}+2}$£¬$\frac{-{2b}^{2}c}{{b}^{2}+2}$£©£¬
¶øÏòÁ¿$\overrightarrow{OA}$+$\overrightarrow{OB}$ÓëÏòÁ¿$\overrightarrow{a}$=£¨2£¬-1£©¹²Ïߣ¬

¡à$\frac{\frac{4c}{{b}^{2}+2}}{\frac{-{2b}^{2}c}{{b}^{2}+2}}$=$\frac{2}{-1}$£¬
¡àb=1£®
£¨¢ò£©Ò×µÃA£¨$\frac{4}{3}$£¬$\frac{1}{3}$£©£¬B£¨0£¬-1£©£¬
ÉèµãP£¨x0£¬y0£©£¬ÔòÖ±ÏßPBµÄ·½³Ì£ºy=$\frac{{y}_{0}+1}{{x}_{0}}$x-1£¬
Áîx=2¿ÉµÃ£ºyN=$\frac{{2y}_{0}{-x}_{0}+2}{{x}_{0}}$£¬
ͬÀíyM=$\frac{{x}_{0}+{2y}_{0}-2}{{3x}_{0}-4}$£¬
¡àyM•yN=$\frac{{£¨{2y}_{0}£©}^{2}{-{£¨x}_{0}-2£©}^{2}}{{x}_{0}£¨{3x}_{0}-4£©}$=$\frac{-{{3x}_{0}}^{2}+{4x}_{0}}{{{3x}_{0}}^{2}-{4x}_{0}}$=-1£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄÐÔÖÊ£¬¿¼²é¹²ÏßÏòÁ¿ÎÊÌ⣬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø