题目内容

18.四棱锥P-ABCD中,CD∥AB,CD=2AB,E为PC中点,R为CD中点.
(1)求证:平面BER∥面PAD;
(2)若BE=AD=4,PA=4$\sqrt{3}$,求异面直线BE与DA所成角的大小.

分析 (1)由已知得四边形ABRD是平行四边形,从而BR∥AD,由此能证明平面BER∥面PAD.
(2)由BR∥AD,且BR=AD=4,得∠EBR是异面直线BE与DA所成角(或所成角的补角),连结AC,交BR于点G,则G是AC中点,连结EG,由此利用余弦定理能求出异面直线BE与DA所成角的大小.

解答 (1)证明:∵四棱锥P-ABCD中,CD∥AB,CD=2AB,E为PC中点,R为CD中点,
∴ER∥PD,AB$\underset{∥}{=}$DR,∴四边形ABRD是平行四边形,
∴BR∥AD,
∵ER∩BR=R,AD∩PD=D,AD?平面ADP,PD?平面ADP,BR?平面BRE,ER?平面BRE,
∴平面BER∥面PAD.
(2)解:∵四边形ABRD是平行四边形,
∴BR∥AD,且BR=AD=4,
∴∠EBR是异面直线BE与DA所成角(或所成角的补角),
连结AC,交BR于点G,则G是AC中点,连结EG,
则EG=$\frac{1}{2}PA=2\sqrt{3}$,BG=2,
在△BEG中,cos∠EBR=$\frac{{4}^{2}+4-12}{2×4×2}$=$\frac{1}{2}$,
∴∠EBR的大小为60°,∴异面直线BE与DA所成角的大小为60.

点评 本题考查面面平行的证明,考查异面直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网