题目内容
【题目】已知是定义在上的函数,满足.
(1)证明:2是函数的周期;
(2)当时,,求在时的解析式,并写出在()时的解析式;
(3)对于(2)中的函数,若关于x的方程恰好有20个解,求实数a的取值范围.
【答案】(1)证明见解析 (2)当时,,当()时, (3)
【解析】
(1)根据,代换得到得到证明.
(2)当时,,则,代入化简得到答案.
(3)画出函数图像,根据函数的图像与直线的交点个数得到答案.
(1)因为,所以,
所以2是函数的周期.
(2)当时,,则,
又,即,解得.
所以当时,,所以
的周期为2,当()时,
(3)作出函数的图像,则方程解的个数就是函数的图像与直线的交点个数.
若,则()都是方程的解,不合题意.
若,则是方程的解,要使方程恰好有20个解,在区间上,有9个周期,每个周期有2个解,在区间上有且仅有一个解.
则解得,.若,同理可得.
综上.
【题目】为了调查一款手机的使用时间,研究人员对该款手机进行了相应的测试,将得到的数据统计如下图所示:
并对不同年龄层的市民对这款手机的购买意愿作出调查,得到的数据如下表所示:
愿意购买该款手机 | 不愿意购买该款手机 | 总计 | |
40岁以下 | 600 | ||
40岁以上 | 800 | 1000 | |
总计 | 1200 |
(1)根据图中的数据,试估计该款手机的平均使用时间;
(2)请将表格中的数据补充完整,并根据表中数据,判断是否有99.9%的把握认为“愿意购买该款手机”与“市民的年龄”有关.
参考公式:,其中.
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【题目】由中央电视台综合频道和唯众传媒联合制作的开讲啦是中国首档青年电视公开课,每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了A、B两个地区的100名观众,得到如表的列联表,已知在被调查的100名观众中随机抽取1名,该观众是B地区当中“非常满意”的观众的概率为.
非常满意 | 满意 | 合计 | |
A | 30 | 15 | |
B | |||
合计 |
完成上述表格并根据表格判断是否有的把握认为观众的满意程度与所在地区有关系;
若以抽样调查的频率为概率,从A地区随机抽取3人,设抽到的观众“非常满意”的人数为X,求X的分布列和期望.
附:参考公式:.