题目内容
【题目】已知函数,.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,都有成立,求的取值范围;
(Ⅲ)试问过点可作多少条直线与曲线相切?并说明理由.
【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ)见解析,理由见解析
【解析】
(Ⅰ)首先求出函数的定义域和导函数,根据导函数分类讨论的取值范围;当时,当时,分析的正负即可求解.
(Ⅱ)由(Ⅰ)中的导函数讨论是否在区间内,利用函数的单调性求出函数的最值,使即可解不等式即可.
(Ⅲ)法一:设切点为,求出切线方程,从而可得,令,讨论的取值范围,分析函数的的单调性以及在上的零点即可求解;
法二:设切点为,求出切线方程,从而可得,分离参数可得,令,讨论的单调性求出函数的值域,根据值域确定的范围即可求解.
(Ⅰ)函数的定义域为,.
(1)当时,恒成立,函数在上单调递增;
(2)当时,令,得.
当时,,函数为减函数;
当时,,函数为增函数.
综上所述,当时,函数的单调递增区间为.
当时,函数的单调递减区间为,单调递增区间为.
(Ⅱ)由(Ⅰ)可知,
(1)当时,即时,函数在区间上为增函数,
所以在区间上,,显然函数在区间上恒大于零;
(2)当时,即时,函数在上为减函数,在上为增函数,
所以.
依题意有,解得,所以.
(3)当时,即时,在区间上为减函数,
所以.
依题意有,解得,所以.
综上所述,当时,函数在区间上恒大于零.
另解:当时,显然恒成立.
当时,恒成立恒成立的最大值.
令,则,易知在上单调递增,
所以最大值为,此时应有.
综上,的取值范围是.
(Ⅲ)设切点为,则切线斜率,
切线方程为.
因为切线过点,则.
即.①
令,则.
(1)当时,在区间上,,单调递增;
在区间上,,单调递减,
所以函数的最大值为.
故方程无解,即不存在满足①式.
因此当时,切线的条数为0.
(2)当时,在区间上,,单调递减,在区间上,,单调递增,
所以函数的最小值为.
取,则.
故在上存在唯一零点.
取,则.
设,,则.
当时,恒成立.
所以在单调递增,恒成立.
所以.
故在上存在唯一零点.
因此当时,过点存在两条切线.
(3)当时,,显然不存在过点的切线.
综上所述,当时,过点存在两条切线;
当时,不存在过点的切线.
另解:设切点为,则切线斜率,
切线方程为.
因为切线过点,则,
即.
当时,无解.
当时,,
令,则,
易知当时,;当时,,
所以在上单调递减,在上单调递增.
又,且,
故当时有两条切线,当时无切线,
即当时有两条切线,当时无切线.
综上所述,时有两条切线,时无切线.