题目内容
已知椭圆
的离心率
,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足
(1)求椭圆C的方程;
(2)是否存在直线
,当直线
交椭圆于P、Q两点时,使点F恰为
的垂心(三角形三条高的交点)?若存在,求出直线
方程;若不存在,请说明理由。![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145125355318.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145124101165.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512426516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512441810.png)
(2)是否存在直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512488633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145125355318.jpg)
(1)
;(2)当
时,△
不存在,故舍去
.
当
时,所求直线
存在,且直线
的方程为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512550656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512566386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512582561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512566386.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512613542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512675599.png)
第一问中利用根据题意得,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512706195.png)
,
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512784497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512800195.png)
,
,
,又
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512909349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512940402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512956488.png)
第二问中,假设存在直线
交椭圆于
,
两点,且
为△
的垂心,
设
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513096665.png)
因为
,
,故
. …………7分
于是设直线
的方程为
,
由
得
,结合韦达定理并由题意应有
,又
,得到结论。
解:根据题意得,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512706195.png)
,
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512784497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512800195.png)
,
,
,又
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512909349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512940402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512956488.png)
故椭圆方程为
. …………5分
(Ⅱ)假设存在直线
交椭圆于
,
两点,且
为△
的垂心,
设
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513096665.png)
因为
,
,故
. …………7分
于是设直线
的方程为
,
由
得
.
由
,得
, 且
,
. ……9分
由题意应有
,又
,
故
,
得
.
即
.
整理得
.
解得
或
. …………11分
经检验,当
时,△
不存在,故舍去
.
当
时,所求直线
存在,且直线
的方程为
.
…………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512706195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512722446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512738483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512769486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512784497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512800195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512831543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512847578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512878621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512894504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512909349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512940402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512956488.png)
第二问中,假设存在直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513003289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513018333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513050302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512582561.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513081611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513096665.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513112604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513143497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513159482.png)
于是设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513206544.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145132371022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513268869.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513284727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145133151259.png)
解:根据题意得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512706195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512722446.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512738483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512769486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512784497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512800195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512831543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512847578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513502631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512894504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512909349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512940402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512956488.png)
故椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512550656.png)
(Ⅱ)假设存在直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513003289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513018333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513050302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512582561.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513081611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513096665.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513112604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513143497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513159482.png)
于是设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513206544.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145132371022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513268869.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513845429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513876486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513892744.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513923801.png)
由题意应有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513284727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145133151259.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214513986877.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214514001992.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145140321072.png)
整理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232145140481230.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512613542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512566386.png)
经检验,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512566386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512582561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512566386.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512613542.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512457280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823214512675599.png)
…………12分
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目