题目内容
【题目】(本小题满分12分)如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(,),记∠COA=α.
(Ⅰ)求的值;
(Ⅱ)求cos∠COB的值.
【答案】(Ⅰ)(Ⅱ)
【解析】
试题分析:(Ⅰ)由终边上一点的坐标,结合三角函数定义可得到的值,利用二倍角公式将所求式子转化为代入其值计算;(Ⅱ)将所求角转化为来表示,利用两角和的余弦公式展开求其值
试题解析:(Ⅰ)∵A的坐标为(,),根据三角函数的定义可知,sinα=, cosα=
∴. 6分
(Ⅱ)∵△AOB为正三角形,∴∠AOB=60°.
∴cos∠COB=cos(α+60°)=cosαcos60°-sinαsin60°.=×-×= 12分
练习册系列答案
相关题目
【题目】为迎接春节,某工厂大批生产小孩具—— 拼图,工厂为了规定工时定额,需要确定加工拼图所花费的时间,为此进行了10次试验,测得的数据如下:
拼图数 /个 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
加工时间 /分钟 | 62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 |
(1)画出散点图,并判断与是否具有线性相关关系;
(2)求回归方程;
(3)根据求出的回归方程,预测加工2010个拼图需要用多少小时?(精确到0.1)
附:回归直线的斜率和截距的最小二乘估计公式分别为:
, .
参考数据 | 合计 | ||||||||||
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 550 | |
62 | 68 | 75 | 81 | 89 | 95 | 102 | 108 | 115 | 122 | 917 | |
100 | 400 | 900 | 1600 | 2500 | 3600 | 4900 | 6400 | 8100 | 10000 | 38500 | |
620 | 1360 | 2250 | 3240 | 4450 | 5700 | 7140 | 8840 | 10350 | 12200 | 55950 |