题目内容
【题目】已知{an}是等差数列,其中a1=25,a4=16
(1)求{an}的通项;
(2)求a1+a3+a5+…+a19值.
【答案】
(1)解:设等差数列{an}的公差为d,
则a4=a1+3d,代值可得16=25+3d,
解得d=﹣3,∴an=25﹣3(n﹣1)=28﹣3n
(2)解:由题意可得a1+a3+a5+…+a19是首项为25,
且公差为﹣6的等差数列,共有10项,
∴
【解析】(1)由题意和等差数列的通项公式可得公差,可得通项公式;(2)可得a1+a3+a5+…+a19是首项为25,且公差为﹣6的等差数列,共有10项,由等差数列的求和公式可得.
【考点精析】本题主要考查了等差数列的通项公式(及其变式)和等差数列的前n项和公式的相关知识点,需要掌握通项公式:或;前n项和公式:才能正确解答此题.
【题目】PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095﹣2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如表所示:
PM2.5日均值 | [25,35] | (35,45] | (45,55] | (55,65] | (65,75] | (75,85] |
频数 | 3 | 1 | 1 | 1 | 1 | 3 |
(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;
(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;
(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级.(精确到整数)