题目内容

【题目】在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F﹣BD﹣C的余弦值.

【答案】证明:(I)因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°.所以∠ADC=∠BCD=120°.又CB=CD,
所以∠CDB=30°,因此,∠ADB=90°,AD⊥BD,
又AE⊥BD且,AE∩AD=A,AE,AD平面AED,
所以BD⊥平面AED;
(II)解法一:

由(I)知,AD⊥BD,同理AC⊥BC,
又FC⊥平面ABCD,因此CA,CB,CF两两垂直,以C为坐标原点,分别以CA,CB,CF所在的直线为X轴,Y轴,Z轴建立如图的空间直角坐标系,
不妨设CB=1,则C(0,0,0),B(0,1,0),D( ,﹣ ,0),F(0,0,1),因此 =( ,﹣ ,0), =(0,﹣1,1)
设平面BDF的一个法向量为 =(x,y,z),则 =0, =0
所以x= y= z,取z=1,则 =( ,1,1),
由于 =(0,0,1)是平面BDC的一个法向量,
则cos< >= = = ,所以二面角F﹣BD﹣C的余弦值为
解法二:

取BD的中点G,连接CG,FG,由于 CB=CD,因此CG⊥BD,又FC⊥平面ABCD,BD平面ABCD,
所以FC⊥BD,由于FC∩CG=C,FC,CG平面FCG.
所以BD⊥平面FCG.故BD⊥FG,所以∠FGC为二面角F﹣BD﹣C的平面角,
在等腰三角形BCD中,由于∠BCD=120°,
因此CG= CB,又CB=CF,
所以GF= = CG,
故cos∠FGC=
所以二面角F﹣BD﹣C的余弦值为
【解析】(Ⅰ)由题意及图可得,先由条件证得AD⊥BD及AE⊥BD,再由线面垂直的判定定理即可证得线面垂直;(II)解法一:由(I)知,AD⊥BD,可得出AC⊥BC,结合FC⊥平面ABCD,知CA,CA,CF两两垂直,因此可以C为坐标原点,分别以CA,CB,CF所在的直线为X轴,Y轴,Z轴建立如图的空间直角坐标系,设CB=1,表示出各点的坐标,再求出两个平面的法向量的坐标,由公式求出二面角F﹣BD﹣C的余弦值即可;解法二:取BD的中点G,连接CG,FG,由于 CB=CD,因此CG⊥BD,又FC⊥平面ABCD,BD平面ABCD,可证明出∠FGC为二面角F﹣BD﹣C的平面角,再解三角形求出二面角F﹣BD﹣C的余弦值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网