题目内容

【题目】如图,在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F分别是边AB,AC上的点,且 ,其中m,n∈(0,1).若EF,BC的中点分别为M,N,且m+4n=1,则 的最小值为

【答案】
【解析】解:连接AM、AN, ∵等腰三角形ABC中,AB=AC=1,A=120°,
=| || |cos120°=﹣
∵AM是△AEF的中线,
= )= +
同理,可得 = + ),
由此可得 = = (1﹣m) + (1﹣n)
=[ (1﹣m) + (1﹣n) ]2= (1﹣m)2+ (1﹣m)(1﹣n) + (1﹣n)2
= (1﹣m)2 (1﹣m)(1﹣n)+ (1﹣n)2
∵m+4n=1,可得1﹣m=4n
∴代入上式得 = ×(4n)2 ×4n(1﹣n)+ (1﹣n)2= n2 n+
∵m,n∈(0,1),
∴当n= 时, 的最小值为 ,此时 的最小值为
所以答案是:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网