题目内容
如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点,
(1)求证
;
(2)求异面直线AC1与B1C所成角的余弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333316624390.png)
(1)求证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331631731.png)
(2)求异面直线AC1与B1C所成角的余弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333316624390.png)
(1)略;(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331678312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331678312.png)
(1)连接
与
,交点为
,则
是
的中点,又D是棱AB的中点,所以
,根据线面平行的判定定理可证出
;
(2)由(1)得
,所以异面直线AC1与B1C所成的角就是
与
所成的角或其补角,在
中,
,
,根据余弦定理求出异面直线AC1与B1C所成角的余弦值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331709423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331787430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331849318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331849318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331709423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331912641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331631731.png)
(2)由(1)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331912641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331959408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233331709423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233332005557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233332021686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233332052549.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目