题目内容

【题目】设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(﹣2),f(3),f(﹣π)的大小顺序是(
A.f(﹣π)>f(3)>f(﹣2)
B.f(﹣π)>f(﹣2)>f(3)
C.f(﹣2)>f(3)>f(﹣π)
D.f(3)>f(﹣2)>f(﹣π)

【答案】A
【解析】解:由已知f(x)是R上的偶函数,所以有f(﹣2)=f(2),f(﹣π)=f(π),
又由在[0,+∞]上单调增,且2<3<π,所以有
f(2)<f(3)<f(π),
所以f(﹣2)<f(3)<f(﹣π),
故答案为:f(﹣π)>f(3)>(﹣2).
故选:A.
利用函数的单调性比较函数值的大小,需要在同一个单调区间上比较,利用偶函数的性质,f(﹣2)=f(2),f(﹣π)=f(π)转化到同一个单调区间上,再借助于单调性求解即可比较出大小.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网