题目内容
已知复数z1满足:(1+2i)
=4+3i,zn+1-zn=2+2i(n∈N+).
(1)求复数z1
(2)求满足|zn|≤13的最大正整数n.
. |
z1 |
(1)求复数z1
(2)求满足|zn|≤13的最大正整数n.
(1)设z1=a+bi(a,b∈R),则
=a-bi
(1+2i)(a-bi)=4+3i
a+2b+(2a-b)i=4+3i
解得:
∴z1=2+i
(2)由zn+1-zn=2+2i(n∈N*)得:
z2-z1=2+2i
z3-z2=2+2i
z4-z3=2+2i
…
zn-zn-1=2+2i(n∈z,n≥2)
累加得zn-z1=2(n-1)+(n-1)i(n∈N*)
zn=2n+(2n-1)i(n∈N*)
|zn|=
=
令|zn|≤13,即8n2-4n+1≤169
2n2-n-42≤0
∴
≤n≤
<5
∴n的最大整数取值是4.
z1 |
(1+2i)(a-bi)=4+3i
a+2b+(2a-b)i=4+3i
|
解得:
|
∴z1=2+i
(2)由zn+1-zn=2+2i(n∈N*)得:
z2-z1=2+2i
z3-z2=2+2i
z4-z3=2+2i
…
zn-zn-1=2+2i(n∈z,n≥2)
累加得zn-z1=2(n-1)+(n-1)i(n∈N*)
zn=2n+(2n-1)i(n∈N*)
|zn|=
4n2+(2n-1)2 |
8n2-4n+1 |
令|zn|≤13,即8n2-4n+1≤169
2n2-n-42≤0
∴
1-
| ||
4 |
1+
| ||
4 |
∴n的最大整数取值是4.
练习册系列答案
相关题目