题目内容
已知函数
若存在函数
使得
恒成立,则称
是
的一个“下界函数”.
(I) 如果函数
为实数
为
的一个“下界函数”,求
的取值范围;
(Ⅱ)设函数
试问函数
是否存在零点,若存在,求出零点个数;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924626581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924641442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924657616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924641442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924719447.png)
(I) 如果函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924735796.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924750239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924719447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924797283.png)
(Ⅱ)设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129248131118.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924828473.png)
(I)
(Ⅱ)函数
不存在零点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924844544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924828473.png)
试题分析:(I)解法一:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924891624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924906589.png)
记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924922706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924938819.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924969630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924984613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925000484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925016494.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925031709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925047615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925000484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925078590.png)
因此
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129250941022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924844544.png)
解法二:由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924891624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925156727.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925187830.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925203841.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925218411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925234936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925250458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925265601.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925281676.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925296555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129253121020.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925312561.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925343421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925359393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925374399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925390990.png)
此与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925296555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925437402.png)
综上得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924844544.png)
(Ⅱ)解法一:函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129254521115.png)
由(I)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925484683.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925499580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129255461315.png)
设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129256241459.png)
(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925640583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925250458.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925655716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925686792.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129257021137.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925733477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925749716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925764576.png)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925780498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925796956.png)
综上知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925811577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924828473.png)
解法二:前同解法一,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129258271213.png)
记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925842936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925858824.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925874555.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925889428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925905510.png)
因此
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129259361227.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925952922.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924828473.png)
解法三:前同解法一, 因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925733477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925983871.png)
设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240129259981009.png)
因此
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926014689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926030719.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925811577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924828473.png)
解法四:前同解法一,因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925733477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925983871.png)
从原点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926123292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926139790.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926154313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926201654.png)
那么
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926217851.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926232501.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926248416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926264549.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926279453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926295323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012926030719.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012925811577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012924828473.png)
点评:中档题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。涉及比较大小问题,通过构造函数,转化成了研究函数的单调性及最值。涉及函数的零点问题,研究了函数的单调性及在区间端点的函数值的符号。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目