题目内容
已知直线ax﹣by﹣2=0与曲线y=x3在点P(1,1)处的切线互相垂直,则为( )
A.3 | B. | C. | D. |
D
试题分析:由导数的几何意义可求曲线y=x3在(1,1)处的切线斜率k,然后根据直线垂直的条件可求的值. 解:设曲线y=x3在点P(1,1)处的切线斜率为k,则k=f′(1)=3
因为直线ax-by-2=0与曲线y=x3在点P(1,1)处的切线互相垂直, ,故选D.
点评:本题主要考查了导数的几何意义:曲线在点(x0,y0)处的切线斜率即为该点处的导数值,两直线垂直的条件的运用.属于基础试题.
练习册系列答案
相关题目