题目内容
(本题满分15分 )已知椭圆![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258575308.png)
经过点
,一个焦点是
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
与
轴的两个交点为
、
,点
在直线
上,直线
、
分别与椭圆
交于
、
两点.试问:当点
在直线
上运动时,直线
是否恒经过定点
?证明你的结论.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258575308.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232332585901032.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258606579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258637587.png)
(Ⅰ)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258653302.png)
(Ⅱ)设椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258653302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258684311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258715320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258746342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258762272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258793467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258809401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258824418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258653302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258871389.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258902342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258762272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258793467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258949486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258965331.png)
I)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232332589961379.jpg)
(II)当点
在直线
上运动时,直线
恒经过定点
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232332589961379.jpg)
(II)当点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258762272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258793467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258949486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233259323527.png)
(I)由题意可知椭圆的两个焦点的坐标分别为
,再根据椭圆过点
,由椭圆的定义可求出
,利用
,求出b,焦点在y轴上,所以椭圆方程确定.
(2)分两种情况研究此问题:当点
在
轴上时,
、
分别与
、
重合,
若直线
通过定点
,则
必在
轴上,设
,当点
不在
轴上时,设
,
、
,
,
,然后分别表示出PA1和PA2的方程,分别与椭圆C方程联立求出M,N的坐标,进而得到向量
的坐标,再根据![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300322560.png)
,得到
,因而求出m=1,从而得到定点Q(1,0).
I)方法1:椭圆的一个焦点是
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082323330057110909.png)
(II)当点
在
轴上时,
、
分别与
、
重合,
若直线
通过定点
,则
必在
轴上,设
,………………(6分)
当点
不在
轴上时,设
,
、
,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300259615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333011803791.jpg)
直线
方程
,
方程
,
代入
得
,
解得
,
,
∴
, ……………(9分)
代入
得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301570739.png)
解得
,
,
∴
, ………………(11分)
∵![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300322560.png)
,
∴
,
∴
,
,
∴当点
在直线
上运动时,直线
恒经过定点
.……(15分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233259355845.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233259386674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233259417732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233259448516.png)
(2)分两种情况研究此问题:当点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258762272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258684311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258871389.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258902342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258715320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258746342.png)
若直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258949486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258965331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258965331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258684311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233259901592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258762272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258684311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233259994519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300197560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300213578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300244650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300259615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300306692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300322560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300337476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300353756.png)
I)方法1:椭圆的一个焦点是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300384587.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082323330057110909.png)
(II)当点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258762272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258684311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258871389.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258902342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258715320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258746342.png)
若直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258949486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258965331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258965331.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258684311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233259901592.png)
当点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258762272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258684311.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233259994519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300197560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300213578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300244650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300259615.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333011803791.jpg)
直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258809401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301273624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258824418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301367651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301273624.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301414595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301445724.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301461628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301492928.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333015071310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301367651.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301414595.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301570739.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301601659.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333016321048.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333016481445.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300322560.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300337476.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232333017102227.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233300353756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233301773385.png)
∴当点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258762272.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258793467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233258949486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233259323527.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目