题目内容

6.对于弱酸,在一定温度下达到电离平衡时,各微粒的浓度存在一种定量的关系.下表是几种常见弱酸的电离平衡常数(25℃).
电离方程式电离平衡常数K
CH3COOHCH3COOH?CH3COO-+H+1.76×10-5
HClOHClO?ClO-+H+2.95×10-8
H2SH2S?H++HS-
HS-?H++S2-
K1=9.1×10-8
K2=1.1×10-12
H2CO3H2CO3?H++HCO3-
HCO3-?H++CO32-
K1=4.31×10-7
K2=5.61×10-11
H3PO4H3PO4?H++H2PO4-
H2PO4-?H++HPO42-
HPO42-?H++PO43-
K1=7.1×10-3
K2=6.3×10-8
K3=4.2×10-13
回答下列问题:
(1)当升高温度时,K值变大,向各弱酸溶液中滴加少量NaOH溶液,K值不变(以上选填“变大”“变小”或“不变”).
(2)在温度相同时,各弱酸的K值不同,那么K值的大小与酸性的相对强弱有何关系在相同条件下K值越大,电离出的氢离子浓度越大,所以酸性越强.
(3)若把CH3COOH、H2CO3、HCO3-、H2S、HS-、H3PO4、H2PO4-、HPO42-都看做是酸,其中酸性最强的是H3PO4,最弱的是HPO42-
(4)同一多元弱酸的K1、K2、K3之间存在着数量上的规律,此规律K1:K2:K3≈1:10-5:10-10,产生此规律的原因是上一级电离产生的H+对下一级电离有抑制作用.
(5)请根据以上碳酸和次氯酸的电离平衡常数,写出在下列条件下所发生反应的离子方程式:
①将少量的氯气通到过量的碳酸钠溶液中Cl2+H2O+2CO32-=2HCO3-+Cl-+ClO-
②在过量的氯水中滴入少量的碳酸钠溶液2Cl2+H2O+CO32-=CO2↑+2Cl-+2HClO.

分析 (1)弱电解质的电离是吸热反应,升高温度促进电离,根据反应物和生成物浓度的变化确定K的变化,电离平衡常数只与温度有关,与溶液是酸碱性无关;
(2)K值越大,酸的电离程度越大;
(3)电离平衡常数越大的酸性越强,越小的酸性越弱;
(4)产生相同离子微粒间相互有抑制作用;
(5)①盐酸的酸性大于碳酸,碳酸的酸性大于次氯酸,次氯酸的酸性大于碳酸氢根离子,所以氯气和过量的碳酸钠反应反应的离子方程式为:Cl2+H2O+2CO32-=2HCO3-+Cl-+ClO-
②盐酸的酸性大于碳酸,碳酸的酸性大量次氯酸,所以过量的氯水和碳酸钠溶液反应的离子方程式为:2Cl2+H2O+CO32-=CO2↑+2Cl-+2HClO.

解答 解:(1)弱电解质的电离是吸热反应,升高温度促进弱电解质电离,则生成物浓度增大反应物浓度减小,所以K值变大,温度不变,电离平衡常数不变,与溶液的酸碱性无关,所以K不变,故答案为:变大;不变;
(2)K值越大,酸的电离程度越大,则溶液中氢原子浓度比氢氧根离子浓度更大,所以溶液的酸性越强,
故答案为:在相同条件下K值越大,电离出的氢离子浓度越大,所以酸性越强;
(3)电离平衡常数越大的酸性越强,越小的酸性越弱,根据表格知,酸性增强的是H3PO4,最弱的是 HPO42-,故答案为:H3PO4;HPO42-
(4)多元弱酸分步电离,第一步电离程度最大,第二步、第三步依次减小,原因是上一级电离产生的H+对下一级电离有抑制作用,故答案为:上一级电离产生的H+对下一级电离有抑制作用;
(5)①盐酸的酸性大于碳酸,碳酸的酸性大于次氯酸,次氯酸的酸性大于碳酸氢根离子,所以氯气和过量的碳酸钠反应反应的离子方程式为:Cl2+H2O+2CO32-=2HCO3-+Cl-+ClO-
故答案为:Cl2+H2O+2CO32-=2HCO3-+Cl-+ClO-
②盐酸的酸性大于碳酸,碳酸的酸性大量次氯酸,所以过量的氯水和碳酸钠溶液反应的离子方程式为:2Cl2+H2O+CO32-=CO2↑+2Cl-+2HClO,故答案为:2Cl2+H2O+CO32-=CO2↑+2Cl-+2HClO.

点评 本题考查了弱电解质的电离,难度不大,知道酸的电离程度越小,其酸性越弱,则其酸根离子的水解程度越大.

练习册系列答案
相关题目
18.某合金由A、B、C、D 四种元素组成,这四种元素位于周期表中前四周期,A是主要成分元素,A的基态原子中有4个未成对电子.B是第一主要的合金元素,B的含量不低于11%,否则不能生成致密氧化膜BO3防止腐蚀,B与A同周期,且原子核外未成对电子数最多.C位于周期表中第4行、第10列,D的基态原子的最外层电子数是其电子层数的2倍,未成对电子数与电子层数相等.
(1)A的原子结构示意图是.A的一种晶体的晶胞如图1甲,乙图中 和表示的是同种原子,即乙是8个甲无隙并置的结果,若按甲图中虚线方向切乙,得到图2的a~d,图中正确的是a.

(2)写出B原子的基态的外围电子排布式3d54S1,与B同周期且基态原子最外层电子数与B相同的元素,可能位于周期表中的s、ds区和-区.
(3)基态D原子的外围电子排布图是. 据报道,只含镁、C和D三种元素的晶体竟然具有超导性.该晶体的结构(如图3示)可看作由镁原子和C原子在一起进行面心立方密堆积,该晶体的化学式为MgCNi3.晶体中每个原子周围距离最近的原子有12个.
(4)(已知$\sqrt{2}$=1.414)CXO晶体晶胞结构为NaCl型,由于晶体缺陷,x值为0.88,晶胞边长为4.28×10-10m.晶胞中两个C原子之间的最短距离为3.03×10-10m(精确至0.01).若晶体中的C分别为C2﹢、C3﹢,此晶体中C2﹢与C3﹢的最简整数比为8:3.
15.Cu的化合物在生活及科研中有重要作用,不同反应可制得不同状态的Cu2O.
(1)科学研究发现纳米级的Cu2O可作为太阳光分解水的催化剂.
①在加热条件下用液态肼(N2H4)还原新制Cu(OH)2可制备纳米级Cu2O,同时放出N2.当收集的N2体积为3.36L(已换算为标准状况)时,可制备纳米级Cu2O的质量为43.2g;
②一定温度下,在2L密闭容器中加入纳米级Cu2O并通入0.20mol水蒸气,发生反应:2H2O(g)═2H2(g)+O2(g)△H=+484kJ•mol-1;测得20min时O2的物质的量为0.0016mol,则前20min的反应速率v(H2O)=8×10-5mol/(L•min);该温度下,反应的平衡常数表达式K=$\frac{{c}^{2}({H}_{2})•c({O}_{2})}{{c}^{2}({H}_{2}O)}$;图1表示在t1时刻达到平衡后,只改变一个条件又达到平衡的不同时段内,H2的浓度随时间变化的情况,则t1时平衡的移动方向为逆向,t2时改变的条件可能为增大压强 和增大H2浓度;若以K1、K2、K3分别表示t1时刻起改变条件的三个时间段内的平衡常数,t3时刻没有加入或减少体系中的任何物质,则K1、K2、K3的关系为K1=K2<K3
(2)已知:2Cu2O(s)+O2(g)═4CuO(s)△H=-292kJ•mol-12C(s)+O2(g)═2CO(g)△H=-221484kJ•mol-1请写出用足量炭粉还原CuO(s)制备Cu2O(s)的热化学方程式:2CuO(s)+C(s)=CO(g)+Cu2O(s),△H=+35.5kJ•mol-1
(3)用电解法也可制备Cu2O.原理如图2所示,则阳极电极反应可以表示为:2Cu++2OH--2e-=C2u+H2O.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网