【题目】截至北京时间2020年3月26日11:30,全球新冠肺炎确诊病例突破47万例,已有60个国家宣布进入紧急状态,国外较多医护人员不得不重复使用一次性口罩和防护装备.深圳海王星辰福田某药店购进A、B两种一次性口罩共1500个,已知购进A种一次性口罩和B种一次性口罩的费用分别为3000元和2000元,且A种一次性口罩的单价比B种一次性口罩单价多1元,求A、B两种一次性口罩的单价各是多少?设A种一次性口罩单价为x元,根据题意,列方程正确的是( )
A.B.
C.D.
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D在AC上,将△ABD绕点B顺时针旋转90°后得到△CBE.
(1)求∠DCE的度数;
(2)当AC=4,AD:DC=1:3时,求DE的长.
【题目】已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.
(1)求k的取值范围:
(2)若k为正整数,且该方程的根都是整数,求k的值及该方程的根.
【题目】下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是( )
A. B. C. D.
【题目】如图①,直线y=与x轴、y轴分别交于点B,C,抛物线y=过B,C两点,且与x轴的另一个交点为点A,连接AC.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点D(与点A不重合),使得S△DBC=S△ABC,若存在,求出点D的坐标;若不存在,请说明理由;
(3)有宽度为2,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线CB于点M和点N,在矩形平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.
【题目】如图,把一个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有射线CP绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到与CB重合,就停止旋转.在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.
(1)设旋转x秒后,点E处的读数为y°,则y与x的函数关系式________.
(2)当CP旋转________秒时,△BCE是等腰三角形.
【题目】某新型高科技商品,每件的售价比进价多6元,5件的进价相当于4件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件.
(1)该商品的售价和进价分别是多少元?
(2)设每天的销售利润为w元,每件商品涨价x元,则当售价为多少元时,该商品每天的销售利润最大,最大利润为多少元?
(3)为增加销售利润,营销部推出了以下两种销售方案:方案一:每件商品涨价不超过8元;方案二:每件商品的利润至少为24元,请比较哪种方案的销售利润更高,并说明理由.
【题目】甲、乙两人用如图的两个分格均匀的转盘A、B做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:
(1)用列表格或画树状图的方法表示游戏所有可能出现的结果.
(2)求甲、乙两人获胜的概率.
【题目】如图,点A,B,C在⊙O上,AB∥OC.
(1)求证:∠ACB+∠BOC=90°;
(2)若⊙O的半径为5,AC=8,求BC的长度.
【题目】如图,点E是正方形ABCD内的一点,将△BEC绕点C顺时针旋转至△DFC.
(1)请问最小旋转度数为多少?
(2)指出图中的全等图形以及它们的对应角?
(3)若∠EBC=30°,∠BCE=80°,求∠F的度数.