【题目】如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.

(1)求证:CF为⊙O的切线;

(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.

【答案】30°

【解析】(1)连结OC,如图,由于∠A=OCA,则根据三角形外角性质得∠BOC=2A,而∠ABD=2BAC,所以∠ABD=BOC,根据平行线的判定得到OCBD,再CEBD得到OCCE,然后根据切线的判定定理得CF为⊙O的切线;
(2)根据三角形的内角和得到∠F=30°,根据等腰三角形的性质得到AC=CF,连接AD,根据平行线的性质得到∠DAF=F=30°,根据全等三角形的性质得到AD=AC,由菱形的判定定理即可得到结论.

答:

(1)证明:连结OC,如图,

OA=OC

∴∠A=OCA

∴∠BOC=A+OCA=2A

∵∠ABD=2BAC

∴∠ABD=BOC

OCBD

CEBD

OCCE

CF为⊙O的切线;

(2)当∠CAB的度数为30°时,四边形ACFD是菱形,理由如下

∵∠A=30°,

∴∠COF=60°,

∴∠F=30°,

∴∠A=F

AC=CF

连接AD

AB是⊙O的直径,

ADBD

ADCF

∴∠DAF=F=30°,

ACBADB,

∴△ACB≌△ADB

AD=AC

AD=CF

ADCF

∴四边形ACFD是菱形。

故答案为:30°.

型】解答
束】
22

【题目】经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.

(1)求出y与x的函数关系式

(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?

(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.

 0  365545  365553  365559  365563  365569  365571  365575  365581  365583  365589  365595  365599  365601  365605  365611  365613  365619  365623  365625  365629  365631  365635  365637  365639  365640  365641  365643  365644  365645  365647  365649  365653  365655  365659  365661  365665  365671  365673  365679  365683  365685  365689  365695  365701  365703  365709  365713  365715  365721  365725  365731  365739  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网