【题目】在平面直角坐标系中,△ABC的三个顶点坐标分别是A(﹣1,1),B(﹣4,1),C(﹣3,3).
(1)将△ABC向下平移5个单位长度后得到△A1B1C1,请画出△A1B1C1;并判断以O,A1,B为顶点的三角形的形状(直接写出结果);
(2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2,并求出点C旋转到C2所经过的路径长.
【题目】某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.
根据图中提供的信息,解答下列问题:
(1)本次调查的学生共有 人;在扇形统计图中,B所对应的扇形的圆心角的度数是 ;
(2)将条形统计图补充完整;
(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.
【题目】如图,点P是正方形ABCD的对角线BD延长线上的一点,连接PA,过点P作PE⊥PA交BC的延长线于点E,过点E作EF⊥BP于点F,则下列结论中:①PA=PE;②CE=PD;③BF﹣PD=BD;④S△PEF=S△ADP,正确的是___(填写所有正确结论的序号)
【题目】如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是___.
【题目】如图,BD是ABCD的对角线,按以下步骤作图:①分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于E,F两点;②作直线EF,分别交AD,BC于点M,N,连接BM,DN.若BD=8,MN=6,则ABCD的边BC上的高为___.
【题目】如图,正方形ABCD的对角线AC,BD相交于点O,点E在BD上由点B向点D运动(点E不与点B重合),连接AE,将线段AE绕点A逆时针旋转90得到线段AF,连接BF交AO于点G.设BE的长为x,OG的长为y,下列图象中大致反映y与x之间的函数关系的是( )
A. B.
C. D.
【题目】某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.
(1)自变量的取值范围是全体实数,与的几组对应值列表:
其中,________.
(2)根据表格数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该图象的另一部分.
(3)观察函数图象,写出两条函数的性质:
________;
________.
【题目】己知二次函数.以下四个结论:
①不论取何值,图象始终过点(,);
②当时,抛物线与轴没有交点:
③当时,随的增大而增大;
④当时,抛物线的顶点达到最高位置.
请你分别判断四个结论的真假,并给出理由.
【题目】已知:抛物线y=(m-1)x2+mx+m2-4的图象经过原点,且开口向上.
(1)确定的值;
(2)求此抛物线的顶点坐标;
(3)画出抛物线的图象,结合图象回答:当取什么值时,随的增大而增大?
(4)结合图象直接回答:当取什么值时,?
【题目】已知二次函数.
该函数图象的对称轴是________,顶点坐标________;
选取适当的数据填入下表,并描点画出函数图象;
…
求抛物线与坐标轴的交点坐标;
利用图象直接回答当为何值时,函数值大于?