【题目】如图,直线CD分别与x轴、y轴交于点D,C,点A,B为线段CD的三等分点,且A,B在反比例函数y=的图象上,S△AOD=6.
(1)求k的值;
(2)若直线OA的表达式为y=2x,求点A的坐标;
(3)若点P在x轴上,且S△AOP=2S△BOD,求点P的坐标.
【题目】为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)
【题目】某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查随机调查了某班所有同学最喜欢的节目每名学生必选且只能选择四类节目中的一类并将调查结果绘成如下不完整的统计图根据两图提供的信息,回答下列问题:
最喜欢娱乐类节目的有______人,图中______;
请补全条形统计图;
根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;
在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.
【题目】如图,长方形ABCD中,AB=3,BC=4,点E是BC边上任一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当CE的长为_____时,△CEB′恰好为直角三角形.
【题目】如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为( )
A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)
【题目】如图,在ABCD中,AB=3,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则四边形ABEF的周长为( )
A.12B.14C.16D.18
【题目】如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.
(1)求出图②中线段PQ所在直线的函数表达式;
(2)将△DCE沿DE翻折,得△DME.
①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;
②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.
【题目】如图①,在中,点分别在上,且.设的边上的高为,的边上的高为.
(1)若、的面积分别为3,1,则 ;
(2)设、、四边形的面积分别为,求证:;
(3)如图②,在中,点分别在上,点在上,且, . 若、、的面积分别为3, 7, 5,求的面积.
【题目】如图,四边形ABCD内接于⊙O,且AB=AC.延长CD至点E,使CE=BD,连接AE.
(1)求证:AD平分∠BDE;
(2)若AB//CD,求证:AE是⊙O的切线.
【题目】如图,己知抛物线与轴相交于点,其对称轴与抛物线相交于点,与轴相交于点.
(1)求的长;
(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为.若新抛物线经过原点,且,求新抛物线对应的函数表达式.