【题目】如图,在平面直角坐标系xOy中,函数(k>0)的图象与直线y=x-3相交与点A(4,m).
(1)求k、m的值;
(2)已知点P(a,a)(a>0),过点P作垂直于y轴的直线,交直线y=x-3于点M,过点P作垂直于x轴的直线,交函数(k>0)的图象于点N.
①当a=1时,判断PM与PN之间的数量关系,并说明理由;
②若PM≥PN,请结合函数图象,直接写出a的取值范围.
【题目】在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OM的长度称为极径.点M的极坐标就可以用线段OM的长度以及从Ox转动到OM的角度(规定逆时针方向转动角度为正)来确定,即M(4,30°)或M(4,-330°)或M(4,390°)等,则下列说法错误的是( ).
A.点M关于x轴对称点M1的极坐标可以表示为M1(4,-30°)
B.点M关于原点O中心对称点M2的极坐标可以表示为M2(4,570°)
C.以极轴Ox所在直线为x轴建立如图所示的平面直角坐标系,则极坐标M(4,30°)转化为平面直角坐标的坐标为M(2,2)
D.把平面直角坐标系中的点N(-4,4)转化为极坐标,可表示为N(,135°)
【题目】如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.
(3)抛物线上有一点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,直接写出点M的坐标.
【题目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.
【题目】甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:
(1)当轿车刚到乙地时,此时货车距离乙地 千米;
(2)当轿车与货车相遇时,求此时x的值;
(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
【题目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
【题目】如图,某数学兴趣小组利用一棵古树BH测量教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.计算教学楼CG的高.(结果精确到0.1,参考数据:≈1.4,≈1.7)
【题目】为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,己知成绩x(单位:分)均满足“50≤x<100”.根据图中信息回答下列问题:
(1)图中a的值为 ;
(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为 度;
(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有 人:
(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x<100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.
【题目】如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2020的横坐标为_____.
【题目】如图,平行四边形ABCD中,AB⊥AC,AB=,BC=,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F,下列说法:①在旋转过程中,AF=CE. ②OB=AC,③在旋转过程中,四边形ABEF的面积为,④当直线AC绕点O顺时针旋转30°时,连接BF,DE则四边形BEDF是菱形,其中正确的是( )
A.①②④B.① ②C.①②③④D.② ③ ④