【题目】解不等式组:;
请结合题意填空,完成本题的解答:
(ⅰ)解不等式(1),得_________;
(ⅱ)解不等式(2),得_________;
(ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:
(ⅳ)原不等式的解集为:__________.
【题目】在每个小正方形的边长为1的网格中,点A、B均为格点.
(Ⅰ)AB的长等于_____.
(Ⅱ)若点C是以AB为底边的等腰直角三角形的顶点,点D在边AC上,且满足S△ABD=S△ABC.请在如图所示的网格中,用无刻度的直尺,画出线段BD,并简要说明点D的位置是如何找到的(不要求证明)______.
【题目】如图,面积为1的正方形ABCD中,M,N分别为AD、BC的中点,将C点折至MN上,落在P点的位置,折痕为BQ,连接PQ.以PQ为边长的正方形的面积等于______.
【题目】如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.
下列判断:
①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
【题目】如图,已知抛物线=与轴交于,两点,与轴交于点.
(1)求抛物线的解析式及顶点坐标;
(2)在抛物线的对称轴上找到点,使得的周长最小,并求出点的坐标;
(3)在(2)的条件下,若点是线段上的一个动点(不与点、重合).过点作交轴于点.设的长为,问当取何值时,.
【题目】如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出的x的取值范围;
(3)求△AOB的面积.
【题目】随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统计图,根据以下信息解答下列问题:
(1)2017年“五一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.
(2)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?
(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
【题目】雾霾天气给人们的生活带来很大影响,空气质量问题备受人们关注,为了减少雾霾影响,某单位计划为职工购买、两种型号的防霾口罩.已知每个种型号防霾口罩价格比每个种型号防霾口罩价格多元,花元购买种型号防霾口罩和花元购买种型号防霾口罩的数量相同.
(1)求、两种型号防霾口罩每个价格各多少元?
(2)根据单位实际情况,需购买、两种型号防霾口罩共个,总费用不高于万元,求种型号防霾口罩至少要购买多少个?
【题目】如图,正方形ABCD中,BD为对角线.
(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若AB=4,求△DEF的周长.
【题目】长方形中,边的长为,边的长为,是长方形边上的一个动点,当三点构成的三角形为等腰三角形时,的长为________.