【题目】在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售800只A型和450只B型的利润为210元,销售400只A型和600只B型的利润为180元.
(1)求每只A型口罩和B型口罩的销售利润;
(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不超过A型口罩的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.
①求y关于x的函数关系式;
②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?
(3)在销售时,该药店开始时将B型口罩提价100%,当收回成本后,为了让利给消费者,决定把B型口罩的售价调整为进价的15%,求B型口罩降价的幅度.
【题目】如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.
(1)求证:CE是⊙O的切线;
(2)若⊙O的半径长为5,BF=2,求EF的长.
【题目】如图是小莉在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成37°角,线段AA1表示小红身高1.5米.当她从点A跑动4米到达点B处时,风筝线与水平线构成60°角,此时风筝到达点E处,风筝的水平移动距离CF为8米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.
(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75.)
【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:四边形ADCF是菱形;
(2)若AC=12,AB=16,求菱形ADCF的面积.
【题目】某中学决定开展课后服务活动,学校就“你最想开展哪种课后服务项目”问题进行了随机问卷调查,调查分为四个类别:.舞蹈;.绘画与书法;.球类;.不想参加.现根据调查结果整理并绘制成如下不完整的扇形统计图和条形统计图,请结合图中所给信息解答下列问题:
(1)这次统计共抽查了_________名学生,请补全条形统计图;
(2)该校共有600名学生,根据以上信息,请你估计全校学生中想参加类活动的人数;
(3)若甲、乙两名同学,各自从三个项目中随机选一个参加,请用列表或画树状图的方法求他们选中同一项目的概率.
【题目】在平面直角坐标系xOy中,直线y=kx+2k(k>0)与x轴交于点P,与双曲线(x>0)交于点Q,若直线y=4kx-2与直线PQ交于点R(点R在点Q右侧),当RQ≤PQ时,k的取值范围是__.
【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+4与坐标轴交于A,B两点,OC⊥AB于点C,P是线段OC上的一个动点,连接AP,将线段AP绕点A逆时针旋转45°,得到线段AP',连接CP',则线段CP'的最小值为( )
A.B.1C.D.
【题目】如图,中,,以为坐标原点建立直角坚标系,使点在轴正半轴上,,,点为边的中点,抛物线的顶点是原点,且经过点
(1)填空:直线的解析式为 ;抛物线的解析式为 .
(2)现将该抛物线沿着线段移动,使其顶点始终在线段上(包括点,),抛物线与轴的交点为,与边的交点为;
①设的面积为,求的取值范围;
②是否存在这样的点,使四边形为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由.
【题目】如图,在矩形中,点是上的一个动点,连结,作点关于的对称点,且点落在矩形的内部,连结,,,过点作交于点,设,
(1)求证:;
(2)当点落在上时,用含的代数式表示的值.
【题目】在我市“青山绿水”行动中,某村计划对面积为3640的山坡进行绿化,经投标由甲,乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天完能完成绿化的面积的2倍,如果两队各自独立完成面积为400区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天各能完成多少面积的绿化;
(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,该村要使这次绿化的总费用不过40万元,则至少应安排乙工程队绿化多少天?