【题目】为迎接2022年冬奥会,鼓励更多的学生参与到志愿服务中来,甲、乙两所学校组织了志愿服务团队选拔活动,经过初选,两所学校各有400名学生进入综合素质展示环节.为了了解两所学校这些学生的整体情况,从两校进人综合素质展示环节的学生中分别随机抽取了50名学生的综合素质展示成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
a.甲学校学生成绩的频数分布直方图如下(数据分成6组:,,,,,);
b.甲学校学生成绩在这一组的是:
80 80 81 81.5 82 83 83 84
85 86 86.5 87 88 88.5 89 89
c.乙学校学生成绩的平均数、中位数、众数、优秀率(85分及以上为优秀)如下:
平均数 | 中位数 | 众数 | 优秀率 |
83.3 | 84 | 78 | 46% |
根据以上信息,回答下列问题:
(1)甲学校学生A,乙学校学生B的综合素质展示成绩同为83分,这两人在本校学生中的综合素质展示排名更靠前的是______(填“A”或“B”);
(2)根据上述信息,推断_____学校综合素质展示的水平更高,理由为_____(至少从两个不同的角度说明推断的合理性);
(3)若每所学校综合素质展示的前120名学生将被选入志愿服务团队,预估甲学校分数至少达到____分的学生才可以入选.
【题目】在二次函数的学习中,教材有如下内容:
例1 函数图象求一元二次方程的近似解(精确到0.1).
解:设有二次函数,列表并作出它的图象(图1).
… | 0 | 1 | 2 | 3 | 4 | 5 | … | ||
… | … |
观察抛物线和轴交点的位置,估计出交点的横坐标分别约为和4.8,所以得出方程精确到0.1的近似解为,,利用二次函数的图象求出一元二次方程的解的方法称为图象法,这种方法常用来求方程的近似解.
小聪和小明通过例题的学习,体会到利用函数图象可以求出方程的近似解.于是他们尝试利用图象法探宄方程的近似解,做法如下:
小聪的做法:令函数,列表并画出函数的图象,借助图象得到方程的近似解.
小明的做法:因为,所以先将方程的两边同时除以,变形得到方程,再令函数和,列表并画出这两个函数的图象,借助图象得到方程的近似解.
请你选择小聪或小明的做法,求出方程的近似解(精确到0.1).