【题目】某学校在A、B两个校区各有九年级学生200人,为了解这两个校区九年级学生的教学学业水平的情况,进行了抽样调查,过程如下,请补充完整.
收集数据:从A、B两个校区各随机抽取20名学生,进行了数学学业水平测试,测试成绩(百分制)如下:
A校区 86 74 78 81 76 75 86 70 75 90
75 79 81 70 74 80 87 69 83 77
B校区 80 73 70 82 71 82 83 93 77 80
81 93 81 73 88 79 81 70 40 83
整理、描述数据 按如下分数段整理、描述这两组样本数据:
成绩x 人数 校区 | 40≤x<50 | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
A | 0 | 0 | 1 | 11 | 7 | 1 |
B |
(说明:成绩80分及以上的学业水平优秀,70﹣79分为淡定业水平良好,60﹣69分为学业水平合格,60分以下为学业水平不合格)
分析数据 两组样本数据的平均数、中位数、众数如下表所示:
校区 | 平均数 | 中位数 | 众数 |
A | 78.3 | m | 75 |
B | 78 | 80.5 | 81 |
其中m= ;
得出结论:a.估计B校区九年级数学学业水平在优秀以上的学生人数为 ;
b.可以推断出 校区的九年级学生的数学学业水平较高,理由为 (至少从两个不同的角度说明推断的合理性).
【题目】如图1,M是圆中上一定点,P是弦AB上一动点,过点A作射线MP的垂线交圆于点C,连接PC.已知AB=5cm,设A、P两点间的距离为xcm,A、C两点间的距离为y1cm,P、C两点的距离为y2cm.小帅根据学习函数的经验,分别对函数y1、y2随自变量x的变化而变化的规律进行了探究.
下面是小帅的探究过程,请补充完整:
(1)按照表中自变量x的值进行取点,画图、测量,分别得到了y1、y2与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 |
y1/cm | 2.55 | 3.15 | 3.95 | 4.76 | 4.95 | 4.30 |
y2/cm | 2.55 | 2.64 | 2.67 |
| 1.13 | 2.55 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;
(3)结合函数图象,解决问题:在点P的运动过程中,当AC与PC的差为最大值时,AP的长度约为 cm.
【题目】学校运动会的立定跳远和1分钟跳绳两个单项比赛分成预赛和决赛两个阶段.下表为参加这两项比赛的10名学生的预赛成绩:
学生编号 成绩 项目 | 3104 | 3508 | 3115 | 3406 | 3317 | 3413 | 3218 | 3307 | 3519 | 3210 |
立定跳远(单位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
1分钟跳绳(单位:次) | 163 | 175 | 160 | 163 | 172 | 170 | 165 |
在这10名学生中,同时进入两项决赛的只有6人,进入立定跳远决赛的有8的值是__________.