【题目】如图,直线AB,CD相交于点O,OE⊥AB于O,若∠BOD=40°,则不正确的结论是( ) A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°
【题目】如图,已知抛物线经过点A(﹣2,0),点B(﹣3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)在抛物线的BC段上,是否存在一点G,使得△GBC的面积最大?若存在,求出这个最大值及此时点G的坐标;若不存在,请说明理由;
(3)P是抛物线的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由;
(4)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,请直接写出点D的坐标.
【题目】因式分解:x2﹣1= .
【题目】在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,那么图形与原图形相比( )A.向右平移了5个单位长度B.向左平移了5个单位长度C.向上平移了5个单位长度D.向下平移了5个单位长度
【题目】定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.
【题目】计算:20162-2016×2015.
【题目】计算:17×3.14+61×3.14+22×3.14;
【题目】如图,已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32,连接BD,AE⊥BD,垂足为E.
(1)求证:△ABE∽△DBC;
(2)求线段AE的长.
【题目】一个正两位数的个位数字是a,十位数字比个位数字大2
(1)请列式表示这个两位数,并化简;
(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新两位数与原两位数的和能被22整除.
【题目】甲、乙、丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为s甲2=36,s乙2=25.4,s丙2=16.则数据波动最小的一组是____.