题目内容
【题目】如图,直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
(1)求a,b的值及反比例函数的解析式;
(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;
(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.
【答案】(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).
【解析】
(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;
(2)设出点P坐标,用三角形的面积公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3n|,进而建立方程求解即可得出结论;
(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.
(1)∵直线y=-x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,
∴a=-1,b=-1,
∴A(-1,3),B(3,-1),
∵点A(-1,3)在反比例函数y=上,
∴k=-1×3=-3,
∴反比例函数解析式为y=;
(2)设点P(n,-n+2),
∵A(-1,3),
∴C(-1,0),
∵B(3,-1),
∴D(3,0),
∴S△ACP=AC×|xPxA|=×3×|n+1|,S△BDP=BD×|xBxP|=×1×|3n|,
∵S△ACP=S△BDP,
∴×3×|n+1|=×1×|3n|,
∴n=0或n=3,
∴P(0,2)或(3,5);
(3)设M(m,0)(m>0),
∵A(1,3),B(3,1),
∴MA2=(m+1)2+9,MB2=(m3)2+1,AB2=(3+1)2+(13)2=32,
∵△MAB是等腰三角形,
∴①当MA=MB时,
∴(m+1)2+9=(m3)2+1,
∴m=0,(舍)
②当MA=AB时,
∴(m+1)2+9=32,
∴m=1+或m=1(舍),
∴M(1+,0)
③当MB=AB时,(m3)2+1=32,
∴m=3+或m=3(舍),
∴M(3+,0)
即:满足条件的M(1+,0)或(3+,0).