题目内容
【题目】如图,已知中,厘米,厘米,点为的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等, 与是否可能全等?若能,求出全等时点Q的运动速度和时间;若不能,请说明理由.
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?
【答案】(1)①,理由见解析;②秒,厘米/秒;(2)经过秒,点与点第一次在边上相遇
【解析】
(1)①根据“路程=速度×时间”可得,然后证出,根据等边对等角证出,最后利用SAS即可证出结论;
②根据题意可得,若与全等,则,根据“路程÷速度=时间”计算出点P的运动时间,即为点Q运动的时间,然后即可求出点Q的速度;
(2)设经过秒后点与点第一次相遇,根据题意可得点与点第一次相遇时,点Q比点P多走AB+AC=20厘米,列出方程,即可求出相遇时间,从而求出点P运动的路程,从而判断出结论.
解:(1)①∵秒,
∴厘米,
∵厘米,点为的中点,
∴厘米.
又∵厘米,
∴厘米,
∴.
又∵,
∴,
在△BPD和△CQP中
∴.
②∵,
∴,
又∵与全等,
,
则,
∴点,点运动的时间秒,
∴厘米/秒.
(2)设经过秒后点与点第一次相遇,
∵
∴点与点第一次相遇时,点Q比点P多走AB+AC=20厘米
∴,
解得秒.
∴点共运动了厘米.
∵,
∴点、点在边上相遇,
∴经过秒,点与点第一次在边上相遇.
练习册系列答案
相关题目