题目内容

【题目】如图,四边形为矩形,四边形为菱形.

求证:

试探究:当矩形边长满足什么关系时,菱形为正方形?请说明理由.

【答案】(1)见解析;(2)见解析.

【解析】

(1)根据矩形的性质可得∠B=∠C=90°,AB=DC,根据菱形的四条边都相等可得AE=DE,然后利用“HL”证明Rt△ABERt△DCE即可;(2)BC=2AB时,菱形AEDF为正方形.根据全等三角形对应边相等可得BE=CE,然后求出AB=BE,从而求出∠BAE=∠AEB=45°,同理可得∠DEC=45°,然后求出∠AED=90°,最后根据有一个角是90°的菱形是正方形即可证得结论

证明:四边形为矩形,

四边形为菱形,

中,

时,菱形为正方形.
理由:




同理可得,


菱形是正方形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网