题目内容

如图,水平地面的A、B两点处有两棵笔直的大树相距2米,小明的父亲在这两棵树间拴了一根绳子,给他做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子.
(1)请完成如下操作:以AB所在直线为x轴、线段AB的垂直平分线为y轴,建立平面直角坐标系,根据题中提供的信息,求绳子所在抛物线的函数关系式;
(2)求绳子的最低点离地面的距离.
(1)按要求建立直角坐标系.…(1分)
设抛物线的函数关系式为:y=ax2+c.…(2分)
将(-0.5,1)、(1,2.5)代入y=ax2+c得:
0.25a+c=1
a+c=2.5
.…(4分)
a=2
c=
1
2

∴绳子所在抛物线的函数关系式为:y=2x2+
1
2
.…(6分)

(2)∵当x=0时,y=2x2+
1
2
=
1
2

∴绳子的最低点离地面的距离为
1
2
米.…(8分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网