题目内容
【题目】如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.
(1)①点B的坐标是 ;②∠CAO= 度;③当点Q与点A重合 时,点P的坐标为 ;(直接写出答案)
(2)设OA的中点为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.
(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.
【答案】(1)①(6,2),②30,③(3,3);(2)m=0或m=3-或m=2;(3)当0≤x≤3时,S梯形=(3+x);当3<x≤5时,S=(3+x)-(x-3)2;当5<x≤9时,S=(12-x);当9<x时,S= .
【解析】矩形的性质,梯形的性质,锐角三角函数,特殊角的三角函数值,相似三角形的判定和性质,解直角三角形。
(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标:
∵四边形OABC是矩形,∴AB=OC,OA=BC,
∵A(6,0)、C(0,2),∴点B的坐标为:(6,2)。
②由正切函数,即可求得∠CAO的度数:
∵,∴∠CAO=30°。
③由三角函数的性质,即可求得点P的坐标;如图:当点Q与点A重合时,过点P作PE⊥OA于E,
∵∠PQO=60°,D(0,3),∴PE=3。
∴。
∴OE=OA﹣AE=6﹣3=3,∴点P的坐标为(3,3)。
(2)分别从MN=AN,AM=AN与AM=MN去分析求解即可求得答案:
情况①:
MN=AN=3,则∠AMN=∠MAN=30°,
∴∠MNO=60°。
∵∠PQO=60°,即∠MQO=60°,∴点N与Q重合。
∴点P与D重合。∴此时m=0。
情况②,如图AM=AN,作MJ⊥x轴、PI⊥x轴。
MJ=MQsin60°=AQsin600
又,
∴,解得:m=3﹣。
情况③AM=NM,此时M的横坐标是4.5,
过点P作PK⊥OA于K,过点M作MG⊥OA于G,
∴MG=。
∴。
∴KG=3﹣0.5=2.5,AG=AN=1.5。∴OK=2。∴m=2。
综上所述,点P的横坐标为m=0或m=3﹣或m=2。
(3)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案。
【题目】某市政府2007年准备投入一定资金加大对主城区的改造力度,但又不影响对教育及其他方面的投入.下面是市规划局等部门提供的信息:
2002年 | 2003年 | 2004年 | 2005年 | |
政府划拨资金 | 1.2 | 1.4 | 1.5 | 1.6 |
招商引进资金 | 5.8 | 6.1 | 6.25 | 6.4 |
①2007年用于主城区改造的资金不超过2007年教育投入的3倍.
②计划2007年比2006年的教育投入多0.5亿元,这样两年的教育投入之比为6:5.
③用于主城区改造的资金一部分由政府划拨,其余来源于招商引资.据分析发现,招商所引资金与政府划拨的资金始终满足某种函数关系.(如下表所示)
政府划拨资金与招商引进资金对照表:(单位:亿元)
④2007年招商引资的投资者从2008年起每年共可获得0.67亿元的回报,估计2007年招商引进的资金至少10年方可收回.
(1)该市政府2006年对教育的投入为多少亿元?
(2)求招商引进资金y(单位:亿元)与财政划拨部分x(单位:亿元)之间的函数关系式;
(3)求2007年该市在主城区改造中财政划拨的资金的范围.
【题目】为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是某市的电价标准(每月)
阶梯 | 电量x(单位:度) | 电费价格(单位:元/度) |
一档 | 0<x≤180 | a |
二档 | 180<x≤400 | b |
三档 | x>400 | 0.95 |
(1)已知陈女士家三月份用电256度,缴纳电费154.56元,四月份用电318度,缴纳电费195.48元请你根据以上数据,求出表格中的a,b的值.
(2)5月份开始用电增多,陈女士缴纳电费280元,求陈女士家5月份的用电量.