题目内容
【题目】我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)ABCD中,AB≠BC,将△ABC沿AC翻折至△AB`C,连结B`D.
结论1:△AB`C与ABCD重叠部分的图形是等腰三角形;结论2:B`D∥AC;
(1)请证明结论1和结论2;
(应用与探究)
(2)在ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB`C,连接B`D若以A、C、D、B`为顶点的四边形是正方形,求AC的长(要求画出图形)
【答案】【发现与证明】(1)见解析;【应用与探究】(2)AC的长为或2.
【解析】
结论1:先判断出,进而判断出 ,即可得出结论;
结论2、先判断出,进而判断出 ,再判断出,即可得出结论;
分两种情况:利用等腰直角三角形的性质即可得出结论.
解:结论1:四边形ABCD是平行四边形,
,,
,
由折叠知,≌,
∴∠ACB=∠ACB’,BC=B’C
∴∠EAC=∠ACB’
,
即是等腰三角形;
结论2:由折叠知,,,
∵AE=CE
【应用与探究】:分两种情况:如图1所示:
四边形是正方形,
,
,
,
;
如图2所示:;
综上所述:AC的长为或2.
练习册系列答案
相关题目