题目内容
【题目】如图,在△ACB中,∠ACB=90°,AC=BC,C点坐标为(﹣3,0),A点坐标为(﹣8,4),则B点的坐标是_____.
【答案】(1,5)
【解析】
过A和B分别作AD⊥OC于D,BE⊥OC于E,利用已知条件可证明△ADC≌△CEB,再有全等三角形的性质和已知数据即可求出B点的坐标.
过A和B分别作AD⊥OC于D,BE⊥OC于E,
∵∠ACB=90°,
∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,
∴∠CAD=∠BCE,
在△ADC和△CEB中,
∴△ADC≌△CEB(AAS),
∴DC=BE,AD=CE,
∵点C的坐标为(-3,0),点A的坐标为(-8,4),
∴OC=3,AD=CE=4,BE=CD=8-3=5,
∴则B点的坐标是(1,5),
故答案为:(1,5).
练习册系列答案
相关题目