题目内容

【题目】如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )

A.50°
B.60°
C.80°
D.90°

【答案】C
【解析】解:如图,

∵A、B、D、C四点共圆,
∴∠GBC=∠ADC=50°,
∵AE⊥CD,
∴∠AED=90°,
∴∠EAD=90°﹣50°=40°,
延长AE交⊙O于点M,
∵AO⊥CD,

∴∠DBC=2∠EAD=80°.
所以答案是:C.
【考点精析】利用垂径定理和圆内接四边形的性质对题目进行判断即可得到答案,需要熟知垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;把圆分成n(n≥3):1、依次连结各分点所得的多边形是这个圆的内接正n边形2、经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网