题目内容
【题目】已知关于x的一元二次方程ax2﹣(a+2)x+2=0有两个不相等的正整数根时,整数a的值是 .
【答案】a=1
【解析】解:∵方程ax2﹣(a+2)x+2=0是关于x的一元二次方程, ∴a≠0.
∵△=(a+2)2﹣4a×2=(a﹣2)2≥0,
∴当a=2时,方程有两个相等的实数根,
当a≠2且a≠0时,方程有两个不相等的实数根.
∵方程有两个不相等的正整数根,
∴a≠2且a≠0.
设方程的两个根分别为x1、x2 ,
∴x1x2= ,
∵x1、x2均为正整数,
∴ 为正整数,
∵a为整数,a≠2且a≠0,
∴a=1,
所以答案是:a=1.
【考点精析】解答此题的关键在于理解求根公式的相关知识,掌握根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根.
【题目】为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:
用户每月用水量(m3) | 32及其以下 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43及其以上 |
户数(户) | 200 | 160 | 180 | 220 | 240 | 210 | 190 | 100 | 170 | 120 | 100 | 110 |
(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?
(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;
(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?
【题目】在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5. 月信息消费额分组统计表
组别 | 消费额(元) |
A | 10≤x<100 |
B | 100≤x<200 |
C | 20≤x<300 |
D | 300≤x<400 |
E | x≥400 |
请结合图表中相关数据解答下列问题:
(1)这次接受调查的有户;
(2)在扇形统计图中,“E”所对应的圆心角的度数是;
(3)请你补全频数直方图;
(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?