题目内容

【题目】如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若tan∠ADB= ,PA= AH,求BD的长;
(3)在(2)的条件下,求四边形ABCD的面积.

【答案】
(1)解:PD与圆O相切.

理由:如图,连接DO并延长交圆于点E,连接AE,

∵DE是直径,

∴∠DAE=90°,

∴∠AED+∠ADE=90°,

∵∠PDA=∠ABD=∠AED,

∴∠PDA+∠ADE=90°,

即PD⊥DO,

∴PD与圆O相切于点D


(2)解:∵tan∠ADB=

∴可设AH=3k,则DH=4k,

∵PA= AH,

∴PA=(4 ﹣3)k,

∴PH=4 k,

∴在Rt△PDH中,tan∠P= =

∴∠P=30°,∠PDH=60°,

∵PD⊥DO,

∴∠BDE=90°﹣∠PDH=30°,

连接BE,则∠DBE=90°,DE=2r=50,

∴BD=DEcos30°=


(3)解:由(2)知,BH= ﹣4k,

∴HC= ﹣4k),

又∵PD2=PA×PC,

∴(8k)2=(4 ﹣3)k×[4 k+ (25 ﹣4k)],

解得:k=4 ﹣3,

∴AC=3k+ (25 ﹣4k)=24 +7,

∴S四边形ABCD= BDAC= ×25 ×(24 +7)=900+


【解析】(1)首先连接DO并延长交圆于点E,连接AE,由DE是直径,可得∠DAE的度数,又由∠PDA=∠ABD=∠E,可证得PD⊥DO,即可得PD与圆O相切于点D;(2)首先由tan∠ADB= ,可设AH=3k,则DH=4k,又由PA= AH,易求得∠P=30°,∠PDH=60°,连接BE,则∠DBE=90°,DE=2r=50,可得BD=DEcos30°= ;(3)由(2)易得HC= ﹣4k),又由PD2=PA×PC,可得方程:(8k)2=(4 ﹣3)k×[4 k+ (25 ﹣4k)],解此方程即可求得AC的长,继而求得四边形ABCD的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网