题目内容
【题目】(本题满分10分)阅读下列材料:
(1)关于x的方程x2-3x+1=0(x≠0)方程两边同时乘以得: 即, ,
(2)a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).
根据以上材料,解答下列问题:
(1)x2-4x+1=0(x≠0),则= ______ , = ______ , = ______ ;
(2)2x2-7x+2=0(x≠0),求的值.
【答案】(1)4;14;194;(2)
【解析】试题分析:(1)根据例题方程两边同时除以x,即可求得x+的值,然后平方即可求得x2+的值,然后再平方求得x4+的值;
(2)首先方程两边除以2x即可求得x+的值,然后平方即可求得x2+的值,然后利用立方差公式求解.
试题解析:(1)方程两边同时乘以得:x4+=0,则x+=4,
两边平方得x2++2=16,则x2+=14,
两边平方得x4++2=196,则x4+=194.
故答案是:4,14,194;
(2)方程两边同时除以2x得x+=0,
则x+=,
两边平方得x2++2=,则x2+=,
∴=(x+)(x2-1+)=×(-1)=.
【题目】阅读下列材料:
为了在甲、乙两名学生中选拔一人参加数学竞赛,在相同条件下,对他们进行了10次测验,成绩如下:(单位:分)
甲成绩 | 76 | 84 | 90 | 86 | 81 | 87 | 86 | 82 | 85 | 83 |
乙成绩 | 82 | 84 | 85 | 89 | 79 | 80 | 91 | 89 | 74 | 79 |
回答下列问题:
(1)甲学生成绩的众数是_______(分),乙学生成绩的中位数是_______(分).
(2)若甲学生成绩的平均数是甲,乙学生成绩的平均数是乙,则甲与乙的大小关系是:________.
(3)经计算知:S2甲=13.2,S2乙=26.36,这表明____________(用简明的文字语言表述)
(4)若测验分数在85分(含85分)以上为优秀,则甲的优秀率为________;乙的优秀率为________.