题目内容
【题目】如图,在中,,,为边上一动点,作如图所示的使得,且,连接,则的最小值为__________.
【答案】
【解析】
根据已知条件,添加辅助线可得△EAC≌△DAM(SAS),进而得出当MD⊥BC时,CE的值最小,转化成求DM的最小值,通过已知值计算即可.
解:如图所示,在AB上取AM=AC=2,
∵,,
∴∠CAB=45°,
又∵,
∴∠EAC+∠CAD=∠DAB+∠CAD=45°,
∴∠EAC =∠DAB,
∴在△EAC与△DAB中
AE=AD,∠EAF =∠DAB,AC =AM,
∴△EAC≌△DAM(SAS)
∴CE=MD,
∴当MD⊥BC时,CE的值最小,
∵AC=BC=2,
由勾股定理可得,
∴ ,
∵∠B=45°,
∴△BDM为等腰直角三角形,
∴DM=BD,
由勾股定理可得
∴DM=BD=
∴CE=DM=
故答案为:
练习册系列答案
相关题目
【题目】A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
(1)根据题意,填写下表:
时间x(h) 与A地的距离 | 0.5 | 1.8 | _____ |
甲与A地的距离(km) | 5 |
| 20 |
乙与A地的距离(km) | 0 | 12 |
|
(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.