题目内容
如图,在Rt△ABC中,∠C=90°.BE平分∠ABC交AC于点E,点D在AB上,DE⊥BE于点E.
(1)判断直线AC与△DBE外接圆的位置关系,并证明你的结论;
(2)若AD=6,AE=6,求BC的长.
(1)判断直线AC与△DBE外接圆的位置关系,并证明你的结论;
(2)若AD=6,AE=6,求BC的长.
解:(1)∵DE⊥BE于E,∴BD为△DBE外接圆的直径,设圆心为O,
连结OE,得OE=OB,
∴∠OBE =∠OEB,∵BE平分∠ABC
∴∠CBE =∠OBE,∴∠OEB=∠CBE,
∴BC∥OE,已知∠C=90°,∴∠OEC=90°,
即直线AC是△DBE外接圆的切线.……………5分
(2)设OE=OD=x,在直角三角形AEO中,
AO 2=AE 2+EO 2,即 (6+ x) 2=(6) 2+ x 2,
解得x=3,由△ABC~△AOE,得=,即=,BC=4.……………10分
连结OE,得OE=OB,
∴∠OBE =∠OEB,∵BE平分∠ABC
∴∠CBE =∠OBE,∴∠OEB=∠CBE,
∴BC∥OE,已知∠C=90°,∴∠OEC=90°,
即直线AC是△DBE外接圆的切线.……………5分
(2)设OE=OD=x,在直角三角形AEO中,
AO 2=AE 2+EO 2,即 (6+ x) 2=(6) 2+ x 2,
解得x=3,由△ABC~△AOE,得=,即=,BC=4.……………10分
略
练习册系列答案
相关题目