题目内容

如图,点AB在⊙O上,直线AC是⊙O的切线,ODOB,连接ABOC于点D
⑴求证:AC=CD
⑵若AC=2,AO=,求OD的长度.
⑴证明:∵AC是⊙切线,
OAAC
∴∠OAC=90°,
∴∠OAB+∠CAB=90°.
OCOB
∴∠COB=90°,
∴∠ODB+∠B=90°.
OA=OB
∴∠OAB=∠B
∴∠CAB=∠ODB
∵∠ODB=∠ADC
∴∠CAB=∠ADC
AC=CD
⑵解:在RtOAC中,OC==3
OD=OCCD=OCAC=3-2=1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网