题目内容
.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.
⑴求证:AC=CD
⑵若AC=2,AO=,求OD的长度.
⑴求证:AC=CD
⑵若AC=2,AO=,求OD的长度.
⑴证明:∵AC是⊙切线,
∴OA⊥AC,
∴∠OAC=90°,
∴∠OAB+∠CAB=90°.
∵OC⊥OB,
∴∠COB=90°,
∴∠ODB+∠B=90°.
∵OA=OB
∴∠OAB=∠B,
∴∠CAB=∠ODB.
∵∠ODB=∠ADC,
∴∠CAB=∠ADC
∴AC=CD.
⑵解:在Rt△OAC中,OC==3
∴OD=OC-CD=OC-AC=3-2=1
∴OA⊥AC,
∴∠OAC=90°,
∴∠OAB+∠CAB=90°.
∵OC⊥OB,
∴∠COB=90°,
∴∠ODB+∠B=90°.
∵OA=OB
∴∠OAB=∠B,
∴∠CAB=∠ODB.
∵∠ODB=∠ADC,
∴∠CAB=∠ADC
∴AC=CD.
⑵解:在Rt△OAC中,OC==3
∴OD=OC-CD=OC-AC=3-2=1
略
练习册系列答案
相关题目